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Executive Summary

The utility of Digital Orthophoto Quads (DOQs) in assessing the classification accuracy of land cover
derived from Landsat MSS data was investigated. Initially, the suitability of DOQs in distinguishing
between different land cover classes was assessed using high-resolution airborne color video data. A cross-
tabulation of the analyst’s DOQ labels and the reference video label was produced and had an overall
accuracy of 92%. This indicated that the DOQ data could be used to identify and distinguish between the
different land cover classes.

A 1992 land cover map for the Upper San Pedro Watershed was available for accuracy assessment.
The map was interpreted and generated by Instituto del Medio Ambiente y el Desarrollo Sustentable del
Estado de Sonora (IMADES), Hermosillo, Sonora. The Environmental Protection Agency (EPA) supplied
Arizona Remote Sensing Center (ARSC) with approximately 60 DOQs for 1992. Most of the land cover
classes were fairly well represented in the DOQs and covered between 24% and 41% in eight out of ten
land cover classes. Only the Barren and Agriculture classes were poorly represented in the available DOQs
covering 5.3% and 14.2% of the map area, respectively.

A total of 457 sample points was used for the accuracy assessment. Allocation of sample points to land
cover classes was through stratified (by land cover class area) random sampling, with a 20-sample
minimum for the smallest classes. Map labels for the sample points were compared with reference DOQ
labels and an error matrix generated. An overall classification accuracy of about 75% was obtained.
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Section 1

A Review – Land Cover Accuracy Assessment

Land cover maps derived from remotely sensed data inevitably contain error of various types and
degrees. It is therefore very important that the nature of these errors be determined, in order for both users
and producers of the maps to be able to gauge their appropriateness for specific uses. In addition,
identifying and correcting the sources of errors may increase the quality of map information. Classification
accuracy assessment is necessary for comparing the performance of various classification techniques,
algorithms, or interpreters (Congalton and Green, 1998). Classification accuracy assessment is now
recognized as a critical component of any mapping project.

Development of criteria and techniques for testing map accuracy began in the 1970s (Hord and
Brooner, 1976; van Genderen and Lock, 1977; Ginevan, 1979). More in-depth studies and development of
new techniques were initiated in the 1980s (Rosenfield et al., 1982; Congalton and Mead, 1983; Aronoff,
1985). Today, the error matrix has become the standard medium for reporting the accuracy of maps
derived from remotely sensed data (Congalton and Green, 1993). More recent research into classification
accuracy assessment has focused on factors influencing the accuracy of spatial data, such as sampling
scheme and sample size, classification scheme, and spatial autocorrelation (Congalton, 1991; Congalton
and Green, 1993). Other important considerations in classification accuracy assessment include ground
verification techniques, and evaluation of all sources of error in the spatial data set.

The accuracy of a classified image refers to the extent to which it agrees with a set of reference data.
Most quantitative methods to assess classification accuracy involve an error matrix built from the two data
sets (i.e., remotely sensed map classification and the reference data). An error matrix is a square array of
numbers set out in rows and columns which express the number of sample units assigned to a particular
category relative to the actual category or as verified on the ground or typically large scale (at least
1:12,000) color aerial photography (Congalton and Green, 1993). The columns normally represent the
reference data, while the rows indicate the classification generated from the remotely sensed data. An error
matrix is a very effective way to represent accuracy because the accuracy of each category is clearly
described, along with both errors of inclusion (commission errors) and errors of exclusion (omission
errors), as well as summary statistics for the entire matrix (Congalton et al., 1983; Congalton, 1991, Ma
and Redmond, 1995).

Overall map accuracy is computed by dividing the total correct (obtained by summing the major
diagonal of the error matrix) by the total number of pixels in the error matrix. Accuracy of individual
categories is computed by dividing the number of correct pixels in a category by either the total number of
pixels in the corresponding row or the corresponding column (Congalton, 1991). When the number of
correct pixels in a category is divided by the total number of pixels in the corresponding row (i.e., total
number of pixels that were classified in that category), the result is an accuracy measure called “user’s
accuracy,” and is a measure of commission error. “User’s accuracy” or reliability is indicative of the
probability that a pixel classified on the map actually represents that category on the ground (Story and
Congalton, 1986). On the other hand, when correct number of pixels in a category are divided by the total
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number of pixels in the corresponding column (i.e., total number of pixels for that category in the reference
data), the result is called “producer’s accuracy.”  “Producer’s accuracy” indicates the probability of a
reference pixel being correctly classified and is really a measure of omission error.

An error matrix is an appropriate beginning for many analytical statistical techniques, especially
discrete multivariate techniques. Discrete multivariate techniques are appropriate because remotely sensed
data are discrete rather than continuous. The data are also binomially or multinomially distributed, and
therefore, common normal theory statistical techniques do not apply (Jensen, 1996).

KAPPA is a discrete multivariate technique developed by Cohen (1960) and has been utilized for land
cover and land use accuracy assessment derived from remotely sensed data (Congalton et al., 1983;
Rosenfield and Fitzpatrick-Lins, 1986; Gong and Howarth, 1990). The result of performing a KAPPA
analysis is the KHAT statistic (an estimate of KAPPA) which is another measure of accuracy or
agreement. Values of KAPPA greater than 0.75 indicate strong agreement beyond chance, values between
0.40 and 0.79 indicate fair to good, and values below 0.40 indicate poor agreement (SPSS, 1998). Overall
accuracy uses only the main diagonal elements of the error matrix, and, as such, it is a relatively simple and
intuitive measure of agreement. On the other hand, because it does not take into account the proportion of
agreement between data sets that is due to chance alone, it tends to overestimate classification accuracy
(Congalton and Mead, 1983; Congalton et al., 1983; Rosenfield and Fitzpatrick-Lins, 1986; Ma and
Redmond, 1995). KHAT accuracy has come into wide use because it attempts to control for chance
agreement by incorporating the off-diagonal elements as a product of the row and column marginals of the
error matrix (Cohen, 1960).

The KAPPA coefficient is a powerful tool because of its ability to provide information about a single
matrix and as a means to statistically compare matrices (Congalton, 1991). The Kappa coefficient serves
as a more rigorous estimate of accuracy considering agreement that may be expected to occur by chance.
Verbyla (1995) gives a formula for computing KHAT:

    
=

Overall Classification Accuracy – Expected Classification Accuracy
1 – Expected Classification Accuracy

The expected classification accuracy is the accuracy expected based upon chance alone or the expected
accuracy if we randomly assigned class values to each pixel. It can be calculated by first using the error
matrix to produce a matrix of the products of row and column totals. The expected classification accuracy
is then computed as the sum of the diagonal cell values divided by the sum of all cell values (Verbyla,
1995).

However, Foody (1992) has shown that, without modifications, KAPPA overestimates the proportion
of agreement due to chance, and underestimates the overall classification accuracy. For this reason, Foody
(1992) proposed the use of a modified KAPPA statistic for use with classifications based on equal
probability of group membership that resembles and is derived more properly from the Tau coefficient.
Kendall’s Tau is a measure of the association between two variables and is limited to the range [-1, +1]. A
value near zero indicates that the values of one variable are uncorrelated with values of the other.

In follow-up research to Foody’s findings, Ma and Redmond (1995) introduced the Tau coefficient,
which measures the improvement of a classification over a random assignment of pixels to groups, and
compared its performance to that of KAPPA and percentage agreement (overall accuracy). They found that
Tau did better at adjusting percentage agreement than KAPPA, and that it was also easier to calculate and

K̂
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interpret. They therefore recommended the Tau statistic as a better measure of classification accuracy for
use with remote sensing data than either KAPPA or percentage agreement.

Other techniques for assessing the accuracy of remotely sensed data have been suggested. Aronoff
(1985) suggested an approach based on the binomial distribution of data, which is very appropriate for
remotely sensed data. This approach involves the use of a minimum accuracy value as an index of
classification accuracy. The advantage of the index is that it expresses statistically the uncertainty involved
in any accuracy assessment. The major disadvantage of the approach is that it is limited to a single overall
accuracy value rather than using the entire error matrix.

Analysis of variance is another technique for accuracy assessment suggested by Rosenfield (1981).
However, violation of normal theory assumption and independence assumption when applying this
technique to remotely sensed data has severely limited its application (Congalton, 1991).
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Section 2

Sampling in Support of Accuracy Assessment

The overriding assumption in the entire classification accuracy assessment procedure is that the error
matrix is indicative or representative of the entire area mapped from the remotely sensed data. For this
reason, a proper sampling approach must be used in generating the error matrix on which all future
analyses will be based (Congalton, 1988). Since a total enumeration of mapped areas for verification is
impossible, sampling is the only means by which the accuracy of a land cover map can be derived. Using
the wrong sampling design can be costly and yield poor results.

Congalton and Green (1998) list four considerations that are critical to designing an accuracy
assessment sample that is truly representative of the map, i.e., (1) statistical distribution of map
information, (2) appropriateness of sampling unit, (3) number of samples to be collected, and (4) choice of
sample units. Most statistics assume that the population to be sampled is continuous and normally
distributed, and that samples selected will be independent. However, map information is discrete and
frequently not normally distributed. Therefore, normal statistical techniques that assume continuous
distribution may be inappropriate for map accuracy assessment. Spatial autocorrelation is also an
important consideration in the formulation of a sampling design for map accuracy assessment. Spatial
autocorrelation is said to occur when the presence, absence, or degree of a certain characteristic affects the
presence, absence, or degree of the same characteristic in neighboring units (Cliff and Ord, 1973), thereby
violating the assumption of sample independence. Campbell (1981) found this condition particularly
important in map accuracy assessment when an error in a certain location was found to positively or
negatively influence errors in surrounding locations.

It is critical that reference data be collected using the same classification scheme as was used to create
the land cover classification map. Classification schemes are a means of organizing spatial information in
an orderly and logical fashion, and therefore fundamental to any mapping project. The classification
scheme makes it possible for the map producer to characterize landscape features and for the user to
readily recognize them. A classification scheme has two critical components: (1) a set of labels, and (2) a
set of rules for assigning the labels (Congalton and Green, 1998). The number and complexity of the
categories in the classification scheme strongly influence the time and effort needed to conduct the accuracy
assessment. The classification scheme should be both mutually exclusive (i.e., each mapped area is one and
only one category) and totally exhaustive (i.e., no area on the map can be left unlabeled).

In order to obtain unbiased ground reference information to compare with the remote sensing
classification map and fill the error matrix values, we need to determine the most appropriate (i.e.,
minimum) sample size acceptable for a valid statistical testing of accuracy of the land cover map.  In
addition, an appropriate sampling scheme must be used to locate the sample points. The binomial
distribution or the normal approximation to the binomial distribution is recognized as the appropriate
mathematical model to use for determining an adequate sample size for accuracy assessment (Hord and
Brooner, 1976; Hay, 1979; Rosenfield and Melley, 1980; Fitzpatrick-Lins, 1981; Rosenfield, 1982). These
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N = 
Z2pq

E2

techniques are statistically sound for computing the overall accuracy of the classification or even the
overall accuracy of a single category (Congalton and Green, 1998).

The equation based on binomial probability theory that relates classification accuracy assessment
sample size to overall classification accuracy and allowable error can be used to calculate the allowable
error on the accuracy of each land cover map (van Genderen and Lock, 1977; Fitzpatrick-Lins, 1981,
Marsh et al., 1994). The equation is:

where,
N = Number of samples
p = Expected or calculated accuracy (in percentage) 
q = 100-p
E = Allowable error
Z = Standard normal deviate for the 95% two-tail confidence level (1.96)

A decision needs to be made on the allowable error, E, in order to determine the minimum number of
sample points necessary to achieve the error. Since we do not have an overall accuracy of any of the land
cover maps, nor an allowable error, a decision has to be made on each. We begin by assuming an initial
allowable error of 5% and an overall map accuracy of between 60% and 95%. We can now use the formula
given above to determine the minimum number of sample points required to achieve this allowable error for
maps whose accuracy ranges between 60% and 95%, at the 95% confidence level. The minimum number of
sample points necessary to achieve an allowable error of 2.5% can also be calculated in a similar manner.
Spatial autocorrelation will affect sample size and especially the sampling scheme to be used in map
accuracy assessment because it violates the assumption of sample independence. Autocorrelation may be
responsible for periodicity in data that could affect the results of any type of systematic sample (Congalton
and Green, 1998).

There are three important considerations in the design of a successful sampling scheme: (1) samples
must be selected without bias, (2) choice of sampling scheme determines what further analysis can be
carried out, and (3) the sampling scheme will determine the distribution of samples across the landscape,
and in turn significantly affect the costs of the accuracy assessment (Congalton and Green, 1998). There
are five common sampling schemes that have been applied for collecting reference data in map accuracy
assessment:

1. Simple random sampling,
2. Systematic sampling,
3. Stratified random sampling,
4. Cluster sampling,
5. Stratified systematic unaligned sampling.

Many researchers have expressed divergent opinions about the proper sampling schemes to use. Berry
and Baker (1968) recommended systematic sampling design as the most efficient when used to assess the
accuracy of land use data where geographic autocorrelation was known to decline monotonically with
increased distance. However, they concluded that stratified systematic unaligned sampling yielded both the
greatest relative efficiency and safety to estimation procedures, where the shape of the autocorrelation
function was unknown. Stratified systematic unaligned sampling attempts to combine the advantages of
randomness and stratification with the ease of a systematic sample without falling into the pitfalls of



6

periodicity common to systematic sampling. This method is a combined approach that introduces more
randomness than just a random start within each stratum (Congalton and Green, 1998). Several other
researchers have supported the use of stratified systematic unaligned sampling (Ayeni, 1982; Mailing,
1989). Campbell (1987) recommended stratified systematic unaligned sampling in situations where the
analyst knew enough about the region to make a good choice of grid size. Rosenfield and Melley (1980)
and Rosenfield et al. (1982) recommended stratified systematic unaligned sampling, with augmentation of
the sample by addition of randomly selected pixels in rare map categories to bring the sample sizes in these
categories up to some minimum number.

Van Genderen et al. (1978) concluded that stratified random sampling techniques were readily
accepted as the most appropriate method of sampling in resource studies using remote sensing imagery,
because important minor categories could be satisfactorily represented. Several studies conducted earlier by
Rudd (1971) and Zonneveld, (1974) had also come to the same conclusion.  In one of the few empirical
studies specifically addressing sampling in remote sensing, Congalton (1988) conducted a simulation study
of three populations by comparing five sampling schemes: simple random, stratified random, cluster,
systematic and stratified systematic unaligned sampling. He found that simple random sampling without
replacement always provided adequate estimates of the population parameters, provided the sample size
was sufficient. However, he found that random sampling may under-sample small but possibly very
important classes unless the sample size was sufficiently large. For the less spatially complex agriculture
and range areas, systematic sampling and stratified systematic unaligned sampling greatly overestimated
the population parameters. For this reason, Congalton (1988) recommended that systematic or stratified
systematic unaligned sampling be used with great caution as they tend to overestimate the population
parameters. In systematic designs, an unbiased estimator of sampling variance is unavailable and so
variance has to be estimated by treating the systematic sample as a simple random sample. It is because of
the reasons outlined above that most analysts prefer stratified random sampling (Jensen, 1996). However,
stratified random sampling can only be carried out after the map has been completed (i.e., when location of
strata is known). This rules out the possibility of simultaneously collecting sample data with training data,
thereby potentially increasing project cost. Stratified random sampling can also be a problem if carried out
long after the classification map was prepared since there may be temporal changes.
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Section 3

Classification Accuracy Assessment Sampling Design for
the San Pedro Watershed

A 1992 land cover map for the Upper San Pedro Watershed (Figure 1) was available for classification
accuracy assessment. The digital map was interpreted and generated from a 2 June 1992 North American
Landscape Characterization (NALC) Landsat Multi-Spectral Scanner (MSS) image by Instituto del Medio
Ambiente y el Desarrollo Sustentable del Estado de Sonora (IMADES), Hermosillo, Sonora. The NALC
project is a component of the National Aeronautics and Space Administration (NASA) Landsat Pathfinder
Program (US-EPA, 1993). The goals of the NALC project are to produce standardized data sets for the
majority of the North American continent. The purpose of the project was to develop standard data analysis
methods to perform inventories of land cover, quantify land cover change analyses, and produce digital data
base products for the U.S. and international global change research programs. A specific objective of the
NALC project has been the assembly of three-date georeferenced data sets, called triplicates, for the U.S.
Global Change Research Program (GCRP) and retrospective evaluations of change. A set of these NALC
triplicates has been generated for the San Pedro Watershed and evaluated for change detection (Kepner et
al., 2000).

The Environmental Protection Agency (EPA) supplied the Arizona Remote Sensing Center (ARSC,
University of Arizona) with 60 Digital Orthophoto Quadrants (DOQs) for 1992. Most of the land cover
classes (Table 1) were fairly well represented in the DOQs and covered between 24% and 41% in eight out
of ten land cover classes.  Only the Barren and Agriculture classes were poorly represented in the available
DOQs covering 5.3% and 14.2% of the map area, respectively.

The available DOQs were black and white and at a scale of approximately 1:24,000.  The
recommended reference data for classification accuracy assessment, when ground truth data is unavailable,
is large scale (1:12,000 or larger) color aerial photography (Congalton and Green, 1993).  Since the DOQ
data did not meet this criterion, we felt there was a need to use other high-resolution data to determine its
suitability for conducting the classification accuracy assessment.  We had high resolution airborne color
video (at a scale of 1:200 when displayed on a 13-inch monitor) for a subset of the Upper San Pedro River
Watershed in the U.S.  This video data was acquired in November 1995.  Full-zoom video frames (n =
557) with a swath width of 50 m were selected systematically from continuously recorded video over a grid
of flight lines.  These points had been interpreted and each assigned a cover class based on the Brown,
Lowe and Pase system (Brown, 1982).  In addition, an estimate of the canopy cover and plant density of
species or groups of species present was also made for each analyzed frame.  These points represent six of
the ten land cover classes in the NALC data sets.  The only classes not included in the 557-video frames
were (1) agriculture, (2) water, (3) barren, and (4) urban.  Fortunately, these classes are clearly the easiest
to identify in the DOQ data.

We then used the airborne video data to perform an accuracy assessment of our ability to recognize and
identify the six vegetation classes (forest, oak woodland, mesquite woodland, grassland, desertscrub, and
riparian) on the DOQ data.  We also produced a complete report on the performance of these data for
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Figure 1. Location of the Upper San Pedro River Basin, Arizona/Sonora (Adapted from
Kepner et al., 2000).

identification of the six vegetation classes.  Conversion of the Brown, Lowe and Pase class video labels to
the IMADES land cover classification scheme and video registration issues are described in more detail in
Section 4.  Both producer’s and user’s accuracy of individual land cover classes was computed, in addition
to overall accuracy, Kappa and Tau statistics.



9

Table 1. Land cover class descriptions for the Upper San Pedro Watershed (Adapted from
Kepner et al., 2000)

Forest Vegetative communities comprised principally of trees potentially over 10 m in height
and frequently characterized by closed or multilayered canopies.  Species in this
category are evergreen (with the exception of aspen), largely coniferous (e.g.,
ponderosa pine, pinyon pine), and restricted to the upper elevations of mountains that
arise off the desert floor.

Oak
Woodland

Vegetative communities dominated by evergreen trees (Quercus spp.) with a mean
height usually between 6 and 15 m.  Tree canopy is usually open or interrupted and
singularly layered.  This cover type often grades into forests at its upper boundary and
into semiarid grassland below.

Mesquite
Woodland

Vegetative communities dominated by leguminous trees whose crowns cover 15% or
more of the ground often resulting in dense thickets.  Historically maintained
maximum development on alluvium of old dissected flood plains; now present without
proximity to major watercourses.  Winter deciduous and generally found at elevations
below 1,200 m.

Grassland Vegetative communities dominated by perennial and annual grasses with occasional
herbaceous species present.  Generally grass height is under 1 m and they occur at
elevations between 1,100 and 1,700 m; sometimes as high as 1,900 m.  This is a
landscape largely dominated by perennial bunch grasses separated by intervening
bare ground or low-growing sod grasses and annual grasses with a less-interrupted
canopy.  Semiarid grasslands are mostly positioned in elevation between evergreen
woodland above and desertscrub below.

Desertscrub Vegetative communities comprised of short shrubs with sparse foliage and small cacti
that occur between 700 and 1,500 m in elevation.  Within the San Pedro River basin
this community is often dominated by one of at least three species, i.e., creosotebush,
tarbush, and whitethorn acacia.  Individual plants are often separated by significant
areas of barren ground devoid of perennial vegetation.  Many desertscrub species are
drought-deciduous.

Riparian Vegetative communities adjacent to perennial and intermittent stream reaches.  Trees
can potentially exceed an overstory height of 10 m and are frequently characterized
by closed or multilayered canopies depending on regeneration.  Species within the
San Pedro basin are largely dominated by two species, i.e., cottonwood and Goodding
willow.  Riparian species are largely winter deciduous.

Agriculture Crops actively cultivated (and irrigated).  In the San Pedro River basin these are
primarily found along the upper terraces of the riparian corridor and are dominated by
hay and alfalfa.  They are minimally represented in overall extent (less than 3%)
within the basin and are irrigated by ground and pivot-sprinkler systems.

Urban
(Low and
High Density)

This is a land-use dominated by small ejidos (farming villages or communes),
retirement homes, or residential neighborhoods (Sierra Vista).  Heavy industry is
represented by a single open-pit copper mining district near the headwaters of the San
Pedro River near Cananea, Sonora (Mexico).

Water Sparse freestanding water is available in the watershed.  This category would be
mostly represented by perennial reaches of the San Pedro and Babocomari rivers with
some attached pools or repressos (earthen reservoirs), tailings ponds near Cananea,
ponds near recreational sites such as parks and golf courses, and sewage treatment
ponds east of the city of Sierra Vista, Arizona.

Barren A cover class represented by large rock outcropping or active and abandoned mines
(including tailings) that are largely absent of aboveground vegetation.
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Before we began our accuracy assessment, we needed to determine the minimum number of sample
points required so that our calculated classification accuracy would have an allowable error of 5% or less
at the 95% confidence interval.  Since the overall accuracy of the land cover map was unknown at this
time, we needed to assume that it fell within a certain range in order to be able to calculate the minimum
number of sample points required to achieve the specified allowable error.  For this calculation, we
assumed that the overall accuracy of the land cover map was between 60% and 95%.  This assumption was
based on frequently reported accuracy’s of land cover maps derived from satellite data (e.g., Jensen et al.,
1993; Marsh et al., 1994; Dimyati et al., 1996; Miguel-Ayanz and Biging, 1997; Ramsey et al., 1997). 
Using the equation based on binomial probability theory (van Genderen and Lock, 1977; Fitzpatrick-Lins,
1981, Marsh et al., 1994), we calculated the minimum number of sample points for a range of accuracy’s,
and allowable errors of 5% and 2.5% at the 95% confidence interval.  The results are summarized in Table
2.

Table 2. Minimum number of sample points, N1 and N2, required
to achieve an allowable error of 5% (E1) and 2.5% (E2),
respectively, at the 95% confidence interval and for
accuracies ranging from 60% to 95%

N1 N2 Z2 p Q E1
2 E2

2

369 1475 3.8416 60.00 40.00 25 6.25

360 1441 3.8416 62.50 37.50 25 6.25

350 1398 3.8416 65.00 35.00 25 6.25

337 1348 3.8416 67.50 32.50 25 6.25

323 1291 3.8416 70.00 30.00 25 6.25

306 1225 3.8416 72.50 27.50 25 6.25

288 1152 3.8416 75.00 25.00 25 6.25

268 1072 3.8416 77.50 22.50 25 6.25

246 983 3.8416 80.00 20.00 25 6.25

222 887 3.8416 82.50 17.50 25 6.25

196 784 3.8416 85.00 15.00 25 6.25

168 672 3.8416 87.50 12.50 25 6.25

138 553 3.8416 90.00 10.00 25 6.25

107 426 3.8416 92.50 7.50 25 6.25

73 292 3.8416 95.00 5.00 25 6.25

We then decided to use the lowest expected land cover map accuracy (60%) in determining the
minimum number of sample points (~ 370) for the accuracy assessments.  If the map accuracy eventually
turned out to be higher than this value, this would result in a smaller allowable error (less than 5%) around
our estimates at the 95% confidence interval.

Based on the literature review described in Section 2, we concluded that a stratified random sampling
design was the most appropriate for the land cover accuracy assessment.  Apportionment of the sample
points to the different land cover categories is shown in Table 3.  However, because the area covered by
some of the smaller land cover classes is negligible compared to the rest of the classes, these classes were
not apportioned a sufficient number of sample points.  If sample size within a stratum is too small, chances
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are that even if the classification is poor we could not sample any classification errors (Miguel-Ayanz and
Biging, 1997).  In such situations, van Genderen and Lock (1977) suggested that the smallest sample in this
class should be 20 or 30 for maps in which the admissible percentage errors are 15% and 10%,
respectively.  For this reason, we set 20 as the minimum number of sample points for any class, therefore
increasing our total number of sample points from 370 to 457.

Table 3. Minimum number of sample points per land cover class stratified by area

Land cover Area (Ha)
Proportion
of Area (%)

Estimated
Samples

Final Number
of Samples

Forest 7385.76 0.98 4 20

Woodland Oak 93663.36 12.42 46 46

Woodland Mesquite 106766.64 14.15 52 52

Grassland 255024.00 33.81 125 125

Desertscrub 232583.40 30.84 114 114

Riparian 5918.04 0.78 3 20

Agriculture 20991.60 2.78 10 20

Urban 24492.24 3.25 12 20

Water 310.68 0.04 0 20

Barren 7139.52 0.95 4 20

Total 754275.24 100.00 370 457

For each sample point, the land cover category on the map was noted and entered in the “map” column
of a spreadsheet, while the interpreted class on the photo was entered in a “reference” column.  This
spreadsheet was then used to generate an error matrix in SYSTAT and used to compute the accuracy of
each category, along with both commission and omission errors.  In addition, summary statistics for the
matrix as a whole (overall classification accuracy, Kappa and Tau statistics) were calculated.
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Section 4

Methods

DOQs were used to conduct a classification accuracy assessment of the 1992 land cover map.  These
photos were acquired in 1992 and were therefore current with the land cover map.  However, because of
the relatively coarse resolution of the DOQs (approximately 1:25,000), it would have been difficult to use
them to distinguish between some of the vegetation communities without access to some other higher
resolution data.  We therefore used high-resolution airborne color video data to help associate subtle
changes in shape, texture, or configuration in the DOQs to specific land cover types.  This video data was
acquired in November 1995 and was at a scale of approximately 1:200.  This exercise constituted the
training of the analyst in order to be able to distinguish between the different land cover types on the
DOQs.

Each video-frame had associated GPS coordinates obtained using a Trimble Basic Receiver at the time
of video-frame acquisition.  Although the nominal accuracy of the GPS receiver is 100 m, ground sampling
revealed that the accuracy was much closer to 20 m (S.  Drake, Personal Communication, 1999).  There
were 557 full-zoom video frames (each frame had a swath width of 50 m) that had been selected
systematically from continuously recorded video over a grid of flight lines, but only 105 were coincident
with the available DOQs used in the accuracy assessment.  Each full-zoom video frame had previously
been interpreted (with detailed information on percentage cover by species and by land cover) and a land
cover class based on the Brown, Lowe and Pase System (Brown, 1982) assigned.  We then re-interpreted
the detailed land cover classes based on this system and aggregated them into one of the ten land cover
classes used in the San Pedro Watershed mapping.  This was one of the most challenging parts of the
exercise and required an understanding of the criteria used in the San Pedro Watershed mapping by
IMADES.  We needed to understand the characteristics and thresholds used by IMADES to assign land
cover classes.  To help understand these criteria better, a team from both IMADES and ARSC met in the
San Pedro Watershed where the former explained their mapping criteria.  Typical vegetation classes such
as mesquite woodland, desertscrub, oak woodland, and grassland sites were visited and GPS coordinates
obtained.  In addition, mixed sites that represented various thresholds between land cover classes were
visited and GPS coordinates acquired.  These sites were later located in available DOQs and compared to
similar classes that were both on the DOQs and the video frames.

All land cover classes in the San Pedro Watershed maps were represented in the 105 full-zoom video
frames except for agriculture, urban, water and barren classes.  The forest and riparian forest classes
though present in both the video and DOQs were greatly underrepresented with only one sample each. 
Fortunately, these absent or underrepresented classes in both the video and DOQs were relatively easy to
identify and distinguish in the DOQs.

Since each full-zoom video frame included detailed information on location (GPS coordinates), species
composition, and percent land cover, it was possible to locate the corresponding sites on the DOQs.  By
coupling prior field experience with information derived from the full-zoom video frames (each covering an
area approximately 50 m × 50 m) in conjunction with DOQs, the analyst was able to quickly and
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Figure 2. Appearance of some land cover classes on
1992 digital orthophoto quadrangles.

confidently develop the knowledge base to recognize each land cover class on the DOQs.  Some of the
classes were easily identifiable in the DOQs but others such as desertscrub, woodland mesquite, and
grassland required considerable training.  Figure 2 shows DOQ chips that are ‘typical’ examples of some
of the land cover classes.  Each chip has been extracted from a DOQ and represents a 3-pixel × 3-pixel
area on a Landsat MSS scene, i.e., 180 m × 180 m area on a DOQ.
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A randomized set of full-zoom video frame locations that correspond to available DOQ coverage was
evaluated.  The analyst then identified in the DOQs the land cover classes associated with each video frame
location.  Since the ‘revised’ class label for each video location was known, it was possible to determine
how reliably the DOQ data could be used to identify the vegetation cover classes.  A cross-tabulation of the
analyst’s DOQ labels and the ‘reference’ video labels were performed in SYSTAT (SPSS, 1998).  One
limitation in this analysis was the small number of samples for some of the land cover classes but this was
not seen as a great problem because the missing classes were those easiest to identify.  The result of this
assessment (Table 4) is a measure of the analyst’s ability to identify the land cover classes.

These results indicated that the DOQ data could be used to identify and distinguish between these
vegetation land cover classes.

Table 4. Error matrix illustrating the analyst’s ability to use the 1992 DOQs for land
cover classification accuracy assessment.  A summary of classification errors
is appended below

Airborne Color Infrared Video (1995)

D
ig

it
al

 O
rt

h
o

p
h

o
to

Q
u

ad
ra

n
g

le
s 

(1
99

2) 1 2 3 4 5 6 Grand Total

1 1 0 0 0 0 0 1

2 0 20 0 0 0 0 20
3 0 0 10 1 1 0 12

4 0 0 2 38 0 0 40
5 0 0 1 2 28 0 31

6 0 0 0 0 0 1 1

Grand Total: 1 20 13 41 29 1 105

Land Cover Class
1992 
DOQs

1995 
Video

Number
Correct

Producer's
Accuracy (%)

User's
Accuracy (%)

1.   Forest 1 1 1 100.00 100.00

2.   Woodland Oak 20 20 20 100.00 100.00
3.   Woodland Mesquite 12 13 10 76.92 83.33

4.   Grassland 40 41 38 92.68 95.00
5.   Desertscrub 31 29 28 96.55 90.32

6.   Riparian Forest 1 1 1 100.00 100.00

Total: 105 105 97

Overall Accuracy (%): 92.381 Coefficient Value Standard Error

Kendall's Tau-B 0.912 0.039

Cohen's Kappa 0.907 0.034
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Section 5

Accuracy Assessment of the 1992 Land Cover Map

In Section 2 of this report we indicated that at least 370 sample points were required for the
classification accuracy assessment.  These samples would be sufficient to result in an allowable error that
would be within 5% of the estimated accuracy at the 95% confidence level, assuming an overall map
accuracy of at least 60%.  The sample size was increased to 457 so that after stratification by area, each
land cover class would have at least 20 samples.

Generation of sample points was performed in ERDAS IMAGINE (ERDAS, 1998) and relied on a
window majority rule.  In generating each stratified random sample point, a window kernel of 
3 × 3 pixels moved across each land cover class and would result in selection of a sample point only if a
clear majority threshold of six pixels out of nine in the window belonged to the same class.  If this majority
threshold rule was not satisfied, that window would be discarded (ERDAS, 1998) and the kernel would
move to a different window.  Generation of sample points in this manner ensured that the points were
extracted from areas of relatively homogenous land cover class.  It is also for this reason that we used a
180 m × 180 m DOQ sample size as it would be equivalent to a 3 × 3 - pixel window on the map.

A total of 457 points was used for the assessment with stratification by land cover area.  The error
matrix showing producer’s and user’s, and overall classification accuracy, and including the Kappa and
Tau coefficients is shown in Table 5.

Table 5. Classification accuracy error matrix for the 1992 land cover map using 1992 DOQs

Reference (Digital Orthophoto Quads)

1 2 3 4 5 6 7 8 9 10 Grand Total

L
an

d
 C

o
ve

r 
C

la
ss

es
 1

99
2 1 22 2 0 0 0 0 0 0 0 0 24

2 0 44 0 3 1 0 0 0 0 0 48
3 0 2 40 9 10 1 0 0 0 0 62
4 0 6 12 68 17 0 0 0 0 0 103
5 0 1 8 11 89 0 0 0 0 0 109
6 0 0 0 0 0 20 3 0 0 0 23
7 0 0 1 0 0 4 18 0 0 0 23
8 0 0 2 1 10 0 1 11 0 0 25
9 0 0 1 0 0 0 0 0 19 0 20

10 0 0 0 7 2 0 0 0 0 11 20
Grand 
Total: 22 55 64 99 129 25 22 11 19 11 457



16

Table 5 (Continued)

Land Cover Class
92_Map

Total
DOQ
Total

Number
Correct

Producer's
Accuracy (%)

User's Accuracy
(%)

1. Forest 24 22 22 100.00 91.67

2. Woodland Oak 48 55 44 80.00 91.67
3. Woodland Mesquite 62 64 40 62.50 64.52

4. Grassland 103 99 68 68.69 66.02
5. Desertscrub 109 129 89 68.99 81.65

6. Riparian Forest 23 25 20 80.00 86.96
7. Agriculture 23 22 18 81.82 78.26

8. Urban 25 11 11 100.00 44.00
9. Water 20 19 19 100.00 95.00

10. Barren 20 11 11 100.00 55.00

Total: 457 457 342

Overall Accuracy (%): 74.836 ± 3.979 Coefficient Value Standard Error
Kendall's Tau-B 0.770 0.025

Cohen's Kappa 0.701 0.025

An overall accuracy of about 75% was obtained.  Although the producer’s accuracy for the urban and
barren classes is 100%, the user’s accuracy is only 44%, and 55%, respectively.  This means that, all the
urban and barren class pixels examined in the DOQs were also labeled as urban and barren classes in the
1992 map.  However, there were many more pixels in the map labeled ‘urban’ and ‘barren’ that turned out
to be some other class in the DOQs.  Indeed, only 44% of all pixels labeled urban in the 1992 turned out to
be urban while 55% of map pixels labeled barren turned out to be ‘barren’ in the DOQs.
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Conclusions

The results discussed in this report indicate that DOQ data when used together with higher resolution
data can be successfully used to perform classification accuracy assessment on land cover maps derived
from historical satellite data.  It is essential that geometric rectification between digital maps being assessed
and the DOQs be equal (Appendix 1).  It is expected that newer DOQs will be even more effective for
accuracy assessment because of their multispectral characteristics.  Because DOQs are already
georeferenced, they could be used to georeference other historical photography for more valid assessment of
land cover maps generated from data before 1992.

The use of DOQ data sets to assess satellite derived classification accuracies appears to be a viable
methodology.  In addition, this methodology could be applied to assess classification accuracy in other
project areas that have used Landsat MSS data obtained from the NALC program.
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Appendix 1

Ground Control Points Used to
Georeference the 1992 NALC Subset Image to
a Precision Corrected 1997 Landsat TM Image

GCP_ID X source Y source X destination Y destination X residual Y residual
RMS
Error

GCP #1 576.625 750.875 567530.688 3547876.688 -0.156 -0.424 0.452

GCP #2 534.625 808.625 565001.313 3544399.688 -0.100 -0.080 0.128

GCP #3 359.125 886.625 554470.563 3539739.938 0.309 -0.058 0.314

GCP #4 466.781 1635.031 560794.891 3494862.234 0.062 0.440 0.444

GCP #5 525.531 1662.531 564343.141 3493244.859 0.458 -0.148 0.481

GCP #6 489.875 1054.625 562279.563 3529636.688 0.038 0.392 0.394

GCP #7 587.875 937.125 568177.281 3536692.219 -0.112 -0.010 0.113

GCP #8 625.781 1401.781 570399.391 3508848.609 0.292 0.019 0.293

GCP #9 492.406 1625.656 562319.641 3495464.297 -0.208 -0.270 0.341

GCP #10 735.625 1699.125 576914.313 3491004.938 -0.249 0.351 0.430

GCP #11 749.031 981.781 577841.453 3534006.984 -0.256 -0.073 0.266

GCP #12 623.781 1220.531 570285.391 3519732.047 -0.121 -0.384 0.402

GCP #13 478.750 1441.250 561562.609 3506524.078 0.322 -0.445 0.549

GCP #14 982.031 2413.531 591603.391 3448200.609 -0.091 0.046 0.102

GCP #15 912.375 2564.125 587377.375 3439174.125 -0.361 0.212 0.418

GCP #16 962.125 2015.125 590455.375 3472091.625 -0.427 -0.285 0.514

GCP #17 1112.625 2004.875 599546.875 3472647.375 0.398 0.476 0.621

GCP #18 1133.531 2163.781 600767.031 3463162.219 0.254 -0.142 0.291

GCP #19 471.531 941.031 561179.641 3536450.859 -0.252 0.276 0.374

GCP #20 145.625 1640.375 541488.813 3494588.813 -0.170 0.111 0.203

GCP #21 508.031 722.406 563431.141 3549560.859 0.110 0.030 0.114

GCP #22 991.125 1662.875 592290.063 3493156.688 0.119 0.326 0.347

GCP #23 825.375 1247.625 582414.813 3518065.688 0.290 0.052 0.295

GCP #24 550.531 579.031 565999.703 3558185.672 -0.037 -0.611 0.612

GCP #25 804.531 1950.031 581015.641 3476002.359 -0.168 -0.244 0.296

GCP #26 661.531 1987.031 572437.141 3473807.859 0.124 -0.415 0.433

GCP #27 440.625 357.375 559413.531 3571419.469 -0.402 0.314 0.510

GCP #28 365.625 154.375 554967.531 3583603.219 0.006 0.060 0.060

GCP #29 309.906 591.906 551565.344 3557368.969 0.328 0.483 0.584

X RMS Error 0.249

Y RMS Error 0.301

Total RMS Error 0.390
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